Abstract
Please reach out to the Principal Investigator for more information on this website.
policy brief
website
Please reach out to the Principal Investigator for more information on this website.
dissertation, thesis, or capstone
research report
N/A
published journal article
Traffic-related pollutant concentrations are typically much higher in near-roadway microenvironments, and pedestrian and resident exposures to air pollutants can be substantially increased by the short periods of time spent on and near roadways. The design of the built environment plays a critical role in the dispersion of pollutants at street level; after normalizing for traffic, differences of a factor of ~5 have been observed between urban neighborhoods with different built environment characteristics. We examined the effects of different built environment designs on the concentrations of street-level ultrafine particles (UFP) at the scale of several blocks using the Quick Urban and Industrial Complex (QUIC) numerical modeling system. The model was capable of reasonably reproducing the complex ensemble mean 3D air flow patterns and pollutant concentrations in urban areas at fine spatial scale. We evaluated the effects of several built environment designs, changing building heights and spacing while holding total built environment volumes constant. We found that ground-level open space reduces street-level pollutant concentrations. Holding volume/surface area constant, tall buildings clustered together with larger open spaces between buildings resulted in substantially lower pollutant concentrations than buildings in rows. Buildings arranged on a ‘checkerboard’ grid with smaller contiguous open spaces, a configuration with some open space on one of the sides of the roadway at all locations, resulted in the lowest average concentrations for almost all wind directions. Rows usually prohibit mixing for perpendicular and oblique wind directions, even when there are large spaces between them, and clustered buildings have some areas where buildings border both sides of the roadways, inhibiting mixing. The model results suggest that pollutant concentrations drop off rapidly with height in the first 10 m or so above the roadways. In addition, the simulated vertical concentration profiles show a moderately elevated peak at the roof levels of the shorter buildings within the area. Model limitations and suggestions for urban design are both discussed.
white paper
This report explores opportunities for employing autonomous driving technology to dampen stop-and-go waves on freeways. If successful, it could reduce fuel consumption and emissions. This technology was tested in an on-road experiment with 100 vehicles over one week. Public stakeholders were engaged to assess the planning effort and feasibility of taking the technology to the next level: a pilot involving 1000+ vehicles over several months. Considerations included the possible geographical boundaries, target fleets of vehicles, and suitable facilities such as bridges or managed lanes. Flow smoothing technology may improve the user experience and operations of managed lanes or bridges, however, it may require external incentives such as reduced tolls to entice the traveling public to use it. This must be matched with other goals such as verifying vehicle occupancy. It might be possible for some hybrid solution that addresses both challenges to provide a way forward. A concept of operations needs to be developed specifically for a target road geometry and a California partner. This concept should benefit from lessons learned from previous pilot projects and will need to be defined so as to achieve both (1) a penetration rate sufficient to achieve measurable effects; and (2) sufficient quality and quantity of data to confirm benefits.
policy brief
policy brief
Considerable advancements have been made in traffic management strategies to address highway congestion over the past decades; however, the continuous growth of metropolitan regions has impeded such progress. In response, transportation planners have given special attention to integrated corridor management (ICM), an approach that coordinates various traffic control units (e.g., ramp metering) to optimize their operations along the entire freeway. Emerging connected vehicle (CV) technology is expected to substantially benefit ICM, where vehicles can communicate with each other and surrounding roadway infrastructure. The combined potential of ICM strategies and CVs could be even greater if combined with strategies that leverage underutilized infrastructure (specifically park-and-ride facilities) to reduce the total number of vehicles on the roadway.
research report
Connected Vehicles (CV) technology offers significant potential for managing traffic congestion and improving mobility along transportation corridors. This report presents a novel approach using integrated corridor management (ICM) technology to divert CVs to underutilized park-and-ride facilities where drivers can park their vehicle and access public transportation. Using vehicle-to-infrastructure (V2I) communication protocols, the system collects data on downstream traffic and sends messages regarding available park-and-ride options to upstream traffic. A deep reinforcement learning (DRL) program controls the messaging, with the objective of maximizing traffic throughput and minimizing CO2 emissions and travel time. The ICM strategy is simulated on a realistic model of Interstate 5 using Veins simulation software. The results show marginal improvement in throughput, freeway travel time, and CO2 emissions, but increased travel delay for drivers choosing to divert to a park-and-ride facility to take public transportation for a portion of their travel.
policy brief
Transportation Network Companies (TNCs, also known as ridehailing and ridesourcing) have expanded across California over the past decade and changed the way people travel. Using a smartphone, travelers can quickly summon a vehicle from almost anywhere and know what the estimated wait time, travel time, and cost will be before stepping into the vehicle. While TNCs are clearly addressing an unmet need for travelers, their growing popularity has raised a number of policy questions, including if TNCs are shifting people away from public transit and other travel modes (e.g., carshare, walking, biking).